JUNE 2017

Distance Education at CAR

CAR provides continuing education opportunities to new Honda R&D Americas associates

The impact of education and research at The Ohio State University Center for Automotive Research (CAR) often reaches beyond students to benefit professional engineers employed in industry.

One example is last summer’s short course series customized for new Honda R&D Americas (HRA) associates as part of the company’s onboarding process. Delivered live at CAR, the three short courses covered Internal Combustion Engine Fundamentals, Advances in Internal Combustion Engines and an Introduction to HEV.

Full Story
Quanqi Dai

Student Spotlight on Quanqi Dai

Quanqi Dai is a graduate research associate in the Laboratory of Sound and Vibration Research (LSVR), led by Department of Mechanical and Aerospace Engineering assistant professor Ryan Harne, PhD. Dai’s research focuses on nonlinear structural dynamics and vibration energy harvesting. He hopes to develop a novel approach to supplying electrical energy, which could serve as an alternative to traditional batteries. Read more>>

Arda Kurt

PI Spotlight on Arda Kurt, PhD

Arda Kurt is a research assistant professor in the Department of Electrical and Computer Engineering and while it’s a relativly new position for him, he certainly can’t claim status as “new.” He arrived at Ohio State as a graduate student in 2005 and has been part of the department and the Center for Automotive Research (CAR) since, currently working on a consortium project titled "Automation and Information Sharing for Vehicular Collaboration: Going Beyond Longitudal Automation for Convoys." Read more>>


Membership Project Updates

Integrated, optimized, and robust nonlinear energy harvesting solutions for self-powered system condition monitoring sensors

Ryan Harne, PhD, assistant professor in the Department of Mechanical and Aerospace Engineering serves as PI for the project “Integrated, optimized and robust nonlinear energy harvesting solutions for self-powered system condition monitoring sensors.” This project delivers localized electric power sources for numerous sensors and devices by converting the kinetic energies of the vehicles into sufficient DC power for the local electronics. The technical challenges surrounding this project involve establishing robust methods that effectively capture and convert the vibration energies available despite the time-varying nature of the vehicle and sub-system motions. Harne and his team use theoretical, simulation and experimental methods to illuminate the complex, electromechanical dynamic framework at hand, and consider realistic input vibrations, such as those measured from vehicles in motion, to characterize the optimality of the DC power delivery from such vibration energy harvesters.

“The demands of light-weighting and material efficiency for vehicle systems encourage the innovative use of all energy resources available,” said Harne.

Beyond PKI: Enhanced Cybersecurity via MIMO

Emre Koksal, PhD, associate professor in the Department of Electrical and Computer Engineering serves as PI for the project “Beyond PKI: Enhanced Cybersecurity via MIMO.” MIMO, or, multiple input, multiple output, is an antenna technology for wireless communications where multiple antennas are used at both the source (transmitter) and the destination (receiver).

“The untethered nature of the open wireless medium of V2X communication opens the door for a wide range of cybersecurity vulnerabilities,” said Koksal. “Message authentication in V2X communication is based on public key infrastructure (PKI) where a certificate authority is responsible for issuing, managing, distributing and revoking certificates.”

In this project, Koksal and his team first develop a physical-layer assisted enhancement to PKI-based message authentication via the use of a receive antenna-array. The scheme makes use of the information contained in DSRC beacon messages to validate the claimed GPS location information with the Angle of Arrival information obtained at the physical layer. The proposed scheme offers a signal processing tool for physical cross verification in order to integrate the existing conventional PKI message authentication with the available physical-layer information. Next, they will extend the idea of the use of the antenna array for cybersecurity to provide a novel secret key agreement protocol. And finally, the team will implement their algorithms in software-defined radios and conduct high-mobility experimentation on TRC grounds. Learn more>>


Mid-Year Review

This year we will be experimenting with a new delivery method for the consortium research project mid-year updates. The sessions will be pre-recorded with an option to submit any questions to the researchers. Log in information to view the updates will be sent to gold and platinum member companies by July 21st.


Powertrain Blockset and Model-Based Calibration Tools from MathWorks
Learn more


Venturi Buckeye Bullet Competition Begins
Learn more


Autumn Semester Begins


EAB: Fall 2017
Learn more