Greetings Jim, Welcome to the IAP Newsletter with research publications, conferences and news regarding applications and infrastructure for AI and machine learning, hardware acceleration, operating systems, networking, security, and storage.


In this edition, we highlight key papers at ISPASS, MLSys, ISCA, USENIX ATC, SIGCOMM, SPLASH, MICRO-57, SoCC and NeurIPS, in addition to Awards, Books, Blogs and News Items. We begin with a recap of recent IAP Workshops at Carnegie Mellon and the University of California.

AI and CLOUD WORKSHOPS - 2024

CMU WORKSHOP ON AI AND SECURITY IN THE CLOUD


Friday, November 8, 2024


Gates Hillman Center, Carnegie Mellon University, Pittsburgh, PA

CMU professors Giulia Fanti, Wenting Zheng and Fei Fang present their research on November 8.


Speakers included (in order of appearance):


Prof. Lujo Bauer, CMU, “From Pandas and Gibbons to Malware Detection: Attacking and Defending Real-world Uses of Machine Learning”

 

Prof. Fei Fang, CMU, “Game Theory and Machine Learning for Addressing Societal Challenges: From Theory to Real-World Impact”​

 

Dr. Daniel Kroening, Amazon Web Services, “The Role of Compilers in Accelerating GenAI”

 

Prof. Riccardo Paccagnella, CMU, “Timing Attacks on Constant-Time Code"


Prof. Vyas Sekar, CMU, “Enabling Data-driven Innovation with Synthetic Data”

 

Prof. Wenting Zheng, CMU and Opaque Systems, "Cryptographic Systems for Private and Secure Generative AI"

 

Prof. Giulia Fanti, CMU, “Gen-T: Reducing the Triage Cost of Distributed Tracing Using Generative Models”

 

Dr. Andrew Schmidt, AMD, “Leveraging Ryzen AI’s Neural Processing Units in the Heterogenous Computing Landscape”

 

This was the third AI and Cloud Workshop hosted by CMU. Please see the CMU WORKSHOP WEB PAGE for the speaker bios, abstracts and videos of the presentations.

UCI WORKSHOP ON THE FUTURE OF AI AND CLOUD COMPUTING


Thursday, May 2, 2024


Interdisciplinary Science & Engineering Building, UC Irvine, Irvine, CA

Prof. Jason Cong, UCLA, Volgenau Chair for Engineering Excellence, opens the morning session,"Can We Automate Chip Design with Deep Learning?" 


Other Speakers on May 2 included:


Prof. Hyoukjun Kwon, UCI, "ML Workloads in AR/VR and their Implication to the ML System Design"


Prof. Quanquan Gu, UCLA and Head of AIDD at ByteDance, "Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models"


Dr. Ian Colbert, AMD, "Quantizing Neural Networks for Efficient AI Inference"


Dr. Somdeb Majumdar, Director of Intel AI Lab, "The Era of Foundation Models – What Lies Beyond LLMs"


Prof. Miryung Kim, UCLA, Vice Chair of Graduate Studies and Amazon Scholar at AWS, "Software Engineering for Data Intensive Scalable Computing and Heterogeneous Computing"


Prof. Aparna Chandramowlishwaran, UCI, "Domain Decomposition meets Neural Operator: AI4Science at Scale"


Dr. Ramyad Hadidi, Rain AI, "On-Device Computing: Rain AI’s Mission for Energy-Efficient AI Hardware"


Prof. Nikil Dutt, UCI, Chancellor's Professor of Computer Science, "Adaptive Computer Systems through Computational Self-Awareness"

​ 

This was the first AI and Cloud Workshop hosted by UCI. Please see the UCI WORKSHOP WEB PAGE for the speaker bios, abstracts and videos of the presentations.

COMING in SPRING 2025


UW AI and CLOUD WORKSHOP 


University of Washington

Seattle, WA


Please watch for IAP Newsletters and our website for further updates on the date and agenda.


In the photo below, Avinash Sodani and Doug Burger catch up during a break at a previous IAP Workshop at UW.

SELECT CONFERENCES and PUBLICATIONS in MAY-DECEMBER 2024


ISPASS 2024 - IEEE International Symposium on Performance Analysis of Systems and Software, Indianapolis, IN, May 5-7, 2024


CiMLoop: A Flexible, Accurate, and Fast Compute-In-Memory Modeling Tool. ISPASS 2024

Tanner Andrulis, Vivienne Sze, Joel S. Emer (MIT)

BEST PAPER AWARD!


Vision Transformer Computation and Resilience for Dynamic Inference

Kavya Sreedhar (Stanford University), Jason Clemons (NVIDIA), Rangharajan Venkatesan (NVIDIA), Stephen W. Keckler (NVIDIA), Mark Horowitz (Stanford University)


SwiftRL: Towards Efficient Reinforcement Learning on Real Processing-In-Memory Systems

Kailash gogineni (George Washington University), Sai Santosh Dayapule (George Washington University), Juan Gomez-Luna (ETH Zurich), Karthikeya Gogineni (Unaffiliated), Peng Wei (George Washington University), Tian Lan (George Washington University), Mohammad Sadrosadati (ETH Zurich), Onur Mutlu (ETH Zurich and Stanford), Guru Venkataramani (George Washington University)


Generative AI Beyond LLMs: System Implications of Multi-Modal Generation

Alicia Golden (Harvard University), Samuel Hsia (Harvard University), Fei Sun (Meta), Bilge Acun (FAIR Meta), Basil Hosmer (FAIR Meta), Yejin Lee (FAIR Meta), Zachary DeVito (FAIR Meta), Jeff Johnson (FAIR Meta), Gu-Yeon Wei (Harvard University), David Brooks (Harvard University), Carole-Jean Wu (FAIR Meta)

MLSys 2024, Santa Clara, May 6-8, 2024


AWQ: Activation-aware Weight Quantization for On-Device LLM Compression and Acceleration

Ji LinJiaming TangHaotian TangShang YangWei-Ming ChenWei-Chen WangGuangxuan XiaoXingyu DangChuang GanSong Han

BEST PAPER AWARD! Note from Prof. Han: In terms of adoption, AWQ quantized models have more than 16 million downloads on Huggingface.


Punica: Multi-Tenant LoRA Serving

Lequn ChenZihao YeYongji WuDanyang ZhuoLuis CezeArvind Krishnamurthy


Proteus: Preserving Model Confidentiality during Graph Optimizations

Yubo GaoMaryam HaghifamChristina GiannoulaRenbo TuGennady PekhimenkoNandita Vijaykumar


Atom: Low-Bit Quantization for Efficient and Accurate LLM Serving

Yilong ZhaoChien-Yu LinKan ZhuZihao YeLequn ChenSize ZhengLuis CezeArvind KrishnamurthyTianqi ChenBaris Kasikci


SLoRA: Scalable Serving of Thousands of LoRA Adapters

Ying ShengShiyi CaoDacheng LiColeman HooperNicholas LeeShuo YangChristopher ChouBanghua ZhuLianmin ZhengKurt KeutzerJoseph GonzalezIon Stoica


HeteroSwitch: Characterizing and Taming System-Induced Data Heterogeneity in Federated Learning

Gyudong KimMehdi GhasemiSoroush HeidariSeungryong KimYoung Geun KimSarma VrudhulaCarole-Jean Wu

ISCA 2024, Buenos Aires, Argentina, June 29-July 3, 2024


Constable: Improving Performance and Power Efficiency by Safely Eliminating Load Execution

R. Bera, A. Ranganathan, J. Rakshit, S. Mahto, A. Nori, J. Gaur, A. Olgun, K. Kanellopoulos, M. Sadrosadati, S. Subramoney, O. Mutlu

BEST PAPER AWARD!


FireAxe: Partitoned FPGA-Accelerated Simulation of Large-Scale RTL Designs

J. Whangbo, E. Lim, C. Zhang, K. Anderson, A. Gonzalez, R. Gupta, N. Krishnakumar, S. Karandikar, B. Nikolic, Y. Shao, K. Asanovic

DISTINGUISHED ARTIFACT AWARD!


The Dataflow Abstract Machine Simulator Framework 

N. Zhang, R. Lacouture, G. Sohn, P. Mure, Q. Zhang, F. Kjolstad, K. Olukotun

DISTINGUISHED ARTIFACT AWARD!


Mind the Gap: Attainable Data Movement and Operational Intensity Bounds for Tensor Algorithms 

Q. Huang, P. Tsai, J. Emer, A. Parashar


Atomique: A Quantum Compiler for Reconfigurable Neutral Atom Arrays

H. Wang, P. Liu, D. Tan, Y. Liu, J. Gu, D. Pan, J. Cong, U. Acar, S. Han


MegIS: High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing 

N. Ghiasi, M. Sadrosadati, H. Mustafa, A. Gollwitzer, C. Firtina, J. Eudine, H. Mao, J. Lindegger, M. Cavlak, M. Alser, J. Park, O. Mutlu


Exploring System-Aware Parallelization for Efficient Large-Scale Machine Learning MAD Max Beyond Single-Node: Enabling Large Machine Learning Model Acceleration on Distributed Systems

S. Hsia, A. Golden, B. Acun, N. Ardalani, Z. DeVito, G. Wei, D. Brooks, C. Wu


Trapezoid: A Versatile Accelerator for Dense and Sparse Matrix Multiplications 

Y. Yang, J. Emer, D. Sanchez


(MC)^2: Lazy MemCopy at the Memory Controller 

A. Kamath, S. Peter


UDP: Utility-Driven Fetch Directed Instruction Prefetching 

S. Oh, M. Xu, T. Khan, B. Kasikci, H. Litz

USENIX ATC, Santa Clara, CA, July 10-12, 2024


Scaling AI Sustainably: An Uncharted Territory

Carole-Jean Wu, Meta

KEYNOTE


SuperBench: Improving Cloud AI Infrastructure Reliability with Proactive Validation

Yifan Xiong, Yuting Jiang, Ziyue Yang, and Lei Qu, Microsoft Research; Guoshuai Zhao, Shuguang Liu, Dong Zhong, Boris Pinzur, Jie Zhang, Yang Wang, Jithin Jose, Hossein Pourreza, Jeff Baxter, Kushal Datta, Prabhat Ram, Luke Melton, and Joe Chau, Microsoft; Peng Cheng, Yongqiang Xiong, and Lidong Zhou, Microsoft Research

BEST PAPER AWARD!


Starburst: A Cost-aware Scheduler for Hybrid Cloud

Michael Luo, Siyuan Zhuang, Suryaprakash Vengadesan, and Romil Bhardwaj, UC Berkeley; Justin Chang, UC Santa Barbara; Eric Friedman, Scott Shenker, and Ion Stoica, UC Berkeley

DISTINGUISHED ARTIFACT AWARD!


Cost-Efficient Large Language Model Serving for Multi-turn Conversations with CachedAttention

Bin Gao, National University of Singapore; Zhuomin He, Shanghai Jiaotong University; Puru Sharma, Qingxuan Kang, and Djordje Jevdjic, National University of Singapore; Junbo Deng, Xingkun Yang, Zhou Yu, and Pengfei Zuo, Huawei Cloud


CyberStar: Simple, Elastic and Cost-Effective Network Functions Management in Cloud Network at Scale

Tingting Xu, Nanjing University; Bengbeng Xue, Yang Song, Xiaomin Wu, Xiaoxin Peng, and Yilong Lyu, Alibaba Group; Xiaoliang Wang, Chen Tian, Baoliu Ye, and Camtu Nguyen, Nanjing University; Biao Lyu and Rong Wen, Alibaba Group;Zhigang Zong, Alibaba Group and Zhejiang University; Shunmin Zhu, Alibaba Group and Tsinghua University


Pecan: Cost-Efficient ML Data Preprocessing with Automatic Transformation Ordering and Hybrid Placement

Dan Graur, Oto Mraz, Muyu Li, and Sepehr Pourghannad, ETH Zurich;Chandramohan A. Thekkath, Google; Ana Klimovic, ETH Zurich


Config-Snob: Tuning for the Best Configurations of Networking Protocol Stack

Manaf Bin-Yahya, Yifei Zhao, and Hossein Shafieirad, Huawei Technologies Canada; Anthony Ho, Huawei Technologies Canada and University of Waterloo;Shijun Yin and Fanzhao Wang, Huawei Technologies China; Geng Li, Huawei Technologies Canada

SIGCOMM 2024, Sydney Australia, August 4-8, 2024


Understanding the Host Network

Midhul VuppalapatiSaksham AgarwalHenry SchuhBaris KasikciArvind KrishnamurthyRachit Agarwal

BEST STUDENT PAPER!


Crux: GPU-Efficient Communication Scheduling for Deep Learning Training

Jiamin CaoYu GuanKun QianJiaqi GaoWencong XiaoJianbo DongBinzhang FuDennis CaiEnnan Zhai (Alibaba Cloud)


Principles for Internet Congestion Management

Lloyd BrownAlbert Gran AlcozFrank CangialosiAkshay NarayanMohammad AlizadehHari BalakrishnanEric FriedmanEthan Katz-BassettArvind KrishnamurthyMichael SchapiraScott Shenker


Relational Network Verification

Xieyang XuYifei YuanZachary KincaidArvind KrishnamurthyRatul MahajanDavid WalkerEnnan Zhai


Shale: A Practical, Scalable Oblivious Reconfigurable Network

Daniel AmirNitika SaranTegan WilsonRobert KleinbergVishal ShrivastavHakimWeatherspoon


Realizing RotorNet: Toward Practical Microsecond Scale Optical Networking

William M. MelletteAlex ForencichRukshani AthapathuAlex C. SnoerenGeorge PapenGeorgePorter


An Architecture For Edge Networking Services

Lloyd BrownEmily MarxDev BaliEmmanuel AmaroDebnil SurEzra KisselInder MongaEthan Katz-BassettArvind KrishnamurthyJames McCauleyTejas NarechaniaAurojit PandaScott Shenker


Alibaba HPN: A Data Center Network for Large Language Model Training

Kun QianYongqing XiJiamin CaoJiaqi GaoYichi XuYu GuanBinzhang FuXuemei ShiFangbo ZhuRui MiaoChao WangPeng WangPengcheng ZhangXianlong ZengEddie RuanZhipingYaoEnnan ZhaiDennis Cai


A Decentralized SDN Architecture for the WAN

Alexander KrentselNitika SaranBikash KoleySubhasree MandalAshok NarayananSylvia RatnasamyAli Al-ShabibiAnees ShaikhRob ShakirAnkit SinglaHakim Weatherspoon

ACM SIGPLAN Conference on Systems, Programming, Languages, and Applications: Software for Humanity (SPLASH) Pasadena, CA, October 20-25, 2024


Trillions of Formally Verified Authorizations a Day!  

Neha Rungta, Amazon Web Services

KEYNOTE


Computing Precise Control Interface Specifications

Eric Campbell, Cornell University, Hossein Hojjat, Tehran Institute for Advanced Studies (TeIAS), Nate Foster, Cornell University and Jane Street


Compilation of Shape Operators on Sparse Arrays

Alexander J Root, Stanford University, Bobby Yan, Stanford University, Peiming Liu, Google Inc, Christophe Gyurgyik, Stanford University, Aart Bik, Google, Inc., Fredrik Kjolstad, Stanford University


Compiler Support for Sparse Tensor Convolutions

Peiming Liu, Google Inc, Alexander J Root, Stanford University, Anlun Xu, Google, Yinying Li, Google, Fredrik Kjolstad, Stanford University, Aart Bik, Google, Inc.


UniSparse: An Intermediate Language for General Sparse Format Customization

Jie Liu, Cornell University, Zhongyuan Zhao, Qualcomm, Zijian Ding, UCLA, Benjamin Brock, Parallel Computing Lab (PCL), Intel, Hongbo Rong, Intel Labs, Zhiru Zhang, Cornell University, USA

IEEE/ACM International Symposium on Microarchitecture (MICRO-57), Austin, Texas, November 2-6, 2024 

 

Fostering Microarchitecture Innovation in the Age of Data-Driven Intelligence

Gilles Pokam, Intel

KEYNOTE


Accelerating Zero-Knowledge Proofs Through Hardware-Algorithm Co-Design

Nikola Samardzic, Simon Langowski, Srinivas Devadas, Daniel Sanchez (Massachusetts Institute of Technology)

BEST PAPER CANDIDATE!


DelayAVF: Calculating Architectural Vulnerability Factors for Delay Faults

Peter W. Deutsch (MIT); Vincent Quentin Ulitzsch (MIT/TU Berlin); Sudhanva Gurumurthi, Vilas Sridharan (AMD); Joel Emer (MIT/NVIDIA); Mengjia Yan (MIT)


Beehive: A Flexible Network Stack for Direct-Attached Accelerators

Katie Lim, Matthew Giordano, Theano Stavrinos (University of Washington); Jacob Nelson (Microsoft Research); Irene Zhang (Microsoft Research/University of Washington); Baris Kasikci (University of Washington and Google); Thomas Anderson (University of Washington)


Stellar: An Automated Design Framework for Dense and Sparse Spatial Accelerators

Hasan Nazim Genc, Hansung Kim (University of California, Berkeley); Prashanth Ganesh, Sophia Shao (UC Berkeley)


RTL2MµPATH: Multi-μPATH Synthesis with Applications to Hardware Security Verification

Yao Hsiao (Stanford University); Nikos Nikoleris, Artem Khyzha (Arm); Dominic P. Mulligan, Gustavo Petri (Amazon Web Services); Christopher W. Fletcher (University of California, Berkeley); Caroline Trippel (Stanford University)


SCAR: Scheduling Multi-Model AI Workloads on Heterogeneous Multi-Chiplet Module Accelereators

Mohanad Odema, Luke Chen (University of California Irvine); Hyoukjun Kwon (University of California, Irvine); Mohammad Al Faruque (UC Irvine)


Azul: An Accelerator for Sparse Iterative Solvers Leveraging Distributed On-Chip Memory

Axel Feldmann, Courtney Golden, Yifan Yang (MIT); Joel Emer (MIT/Nvidia); Daniel Sanchez (MIT)


FloatAP: Supporting High-Performance Floating-Point Arithmetic in Associative Processors

Kailin Yang, José F. Martínez (Cornell University)


BreakHammer: Enabling Scalable and Low Overhead RowHammer Mitigations via Throttling Preventive Action Triggering Threads

Oğuzhan Canpolat (TOBB ETÜ); Giray Yaglikci, Ataberk Olgun, Ismail Emir Yuksel (ETH Zurich); Yahya Can Tuğrul (ETH Zurich & TOBB ETÜ); Konstantinos Kanellopoulos (ETH Zurich); Oğuz Ergin (TOBB ETÜ); Onur Mutlu (ETH Zurich & Stanford University)


SambaNova SN40L: Scaling the AI Memory Wall with Dataflow and Composition of Experts

Raghu Prabhakar, Ram Sivaramakrishnan, Darshan Gandhi, Yun Du, Mingran Wang, Xiangyu Song, Kejie Zhang, Tianren Gao, Angela Wang, Joshua Brot, Denis Sokolov, Calvin Leung, Arjun Sabnis, Jiayu Bai, David Jackson, Mark Luttrell, Manish K. Shah, Mark Gottscho, Tuowen Zhao, Karen Li, Urmish Thakker, Edison Chen, Dawei Huang, Swayambhoo Jain, Kevin J. Brown, Kunle Olukotun (SambaNova Systems, Inc)

ACM Symposium on Cloud Computing 2024 (SoCC '24), Redmond, WA, November 20-22, 2024


En4S: Enabling SLOs in Serverless Storage Systems

Minghao Xie, Chen Qian, Heiner Litz (University of California Santa Cruz)

BEST PAPER AWARD!


Towards Swap-Free, Continuous Ballooning for Fast, Cloud-Based Virtual Machine Migrations

Kevin Alarcón Negy, Tycho Nightingale, Hakim Weatherspoon, Zhiming Shen (Exostellar, inc.)


The Sunk Carbon Fallacy: Rethinking Carbon Footprint Metrics for Effective Carbon-Aware Scheduling

Noman Bashir, Varun Gohil (MIT), Mohammad Shahrad (University of British Columbia), David Irwin (University of Massachusetts, Amherst), Anagha Belavadi Subramanya, Elsa Olivetti, Christina Delimitrou (MIT)

NeurIPS 2024, The Thirty-Eighth Annual Conference on Neural Information Processing Systems, Vancouver, BC, December 10-15, 2024


How to Optimize What Matters Most?

Rosalind Picard

INVITED TALK


Generative Adversarial Nets 

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio

TEST OF TIME AWARD


Are More LLM Calls All You Need? Towards the Scaling Properties of

Compound AI Systems

Lingjiao Chen · Jared Quincy Davis · Boris Hanin · Peter Bailis · Ion Stoica · Matei A Zaharia · James Zou


Neural Model Checking

Mirco Giacobbe · Daniel Kroening · Abhinandan Pal · Michael Tautschnig

AWARDS


IFIP Jean-Claude Laprie (JCL) Award in Dependable Computing

Onur Mutlu, ETH Zurich


2024 Phil Kaufman Award, Highest Honor in Electronic System Design

Jason Cong, UCLA


2024 David Richardson Medal

Radha Nagarajan, Marvell


BEST PAPER AWARDS


ACM SIGARCH/SIGPLAN/SIGOPS ASPLOS INFLUENTIAL PAPER AWARD

ASPLOS 2014

Paragon: QoS-Aware Scheduling for Heterogeneous Datacenters

Christina Delimitrou and Christos Kozyrakis


ISPASS 2024 Best Paper

CiMLoop: A Flexible, Accurate, and Fast Compute-In-Memory Modeling Tool. ISPASS 2024

Tanner Andrulis, Vivienne Sze, Joel S. Emer


MLSys 2024 Best Paper

AWQ: Activation-aware Weight Quantization for On-Device LLM Compression and Acceleration

Ji LinJiaming TangHaotian TangShang YangWei-Ming ChenWei-Chen WangGuangxuan XiaoXingyu DangChuang GanSong Han


Note from Prof. Han: In terms of adoption, AWQ quantized models have more than 16 million downloads on Huggingface.


ISCA 2024 Best Paper

Constable: Improving Performance and Power Efficiency by Safely Eliminating Load Execution

R. Bera, A. Ranganathan, J. Rakshit, S. Mahto, A. Nori, J. Gaur, A. Olgun, K. Kanellopoulos, M. Sadrosadati, S. Subramoney, O. Mutlu


SIGCOMM 2024 Best Student Paper

Understanding the Host Network

Midhul VuppalapatiSaksham AgarwalHenry SchuhBaris KasikciArvind KrishnamurthyRachit Agarwal


ACM SoCC Best Paper

En4S: Enabling SLOs in Serverless Storage Systems

Minghao Xie, Chen Qian, Heiner Litz (University of California Santa Cruz)


NEW APPOINTMENTS


Professor Nate Foster, Cornell, was appointed Associate Dean for Research for Bowers CIS and Vice Chair of DARPA ISAT.



BOOKS


MACHINE LEARNING SYSTEMS with TINYML

Machine Learning Systems with TinyML” offers an accessible entry into the fascinating world of computing that enables machine learning, with a special focus on its implementation in resource-constrained environments using TinyML. This is an open source project on GitHub; contributors are welcome! See Prof. Vijay Janapa Reddy’s podcast and this short IEEE paper, which explores ML systems engineering as a formal discipline.


BLOGS


August 1, 2024

Designing Computer Systems for Sustainability

by Carole Jean-Wu, Tamar Eilam, Babak Falsafi, Gage Hills, and Srilatha Manne



July 24, 2024

Remembering Arvind

by Friends, Colleagues, and Students of Arvind


June 13, 2024

ACE Center: Energy-efficient Distributed Computing for the Next Decade and Beyond

by Josep Torrellas


NEWS ITEMS


November 29, 2024

Alibaba releases Qwen with Questions, an open reasoning model that beats o1-preview


November 12, 2024

Amazon Puts $110M Into Academic Generative AI Research 


November 6, 2024

AMD Launches New CPUs, GPUs And More Across Datacenter, AI And PC


Sept 25, 2024

Chip giant Nvidia acquires OctoAI, a Seattle startup that helps companies run AI models


July 31, 2024

Marvell Delivers On CXL’s Promise Of Efficient, Scalable Data Centers


June 3, 2024

Computex 2024: The Battle for AI Copilot PCs Begins

IAP Workshop Testimonials

 

Professor Christos Kozyrakis, Stanford - “As a starting point, I think of these IAP workshops as ‘Hot Chips meets ISCA’, i.e., an intersection of industry’s newest solutions in hardware (Hot Chips) with academic research in computer architecture (ISCA); but more so, these workshops additionally cover new subsystems and applications, and in a smaller venue where it is easy to discuss ideas and cross-cutting approaches with colleagues.” 

 

Professor Heiner Litz, UC Santa Cruz - "The IAP workshops represent extremely valuable events for all attendees including industry members, students and faculty. On my side, multiple project collaborations and student internships have evolved from these meetings leading to a win-win-win situation for all participants.” 


Professor Ana Klimovic, ETH Zurich - “I have attended three IAP workshops as a PhD student at Stanford and was consistently impressed by the quality of the talks and the breadth of the topics covered. These workshops bring top-tier industry and academia together to discuss cutting-edge research challenges. It is a great opportunity to exchange ideas and get inspiration for new research opportunities." 

 

Dr. Nathan Pemberton, Scientist, Amazon Web Services - "IAP workshops provide a valuable chance to explore emerging research topics with a focused group of participants, and without all the time/effort of a full-scale conference. Instead of rushing from talk to talk, you can slow down and dive deep into a few topics with experts in the field." 


Support a unique tech forum that brings together academia and industry under your company's banner? 

Please feel free to contact us regarding sponsorship opportunities, and for more info about any of the items above.

 

Best,

 

Jim Ballingall

Executive Director

Industry-Academia Partnership (IAP) 

www.industry-academia.org

jim.ballingall@gmail.com

cel: 408-212-1035


Copyright © 2013-2024 Industry-Academia Partnership