Editor's Note
This study set out to map out a detailed lipidome characterization of Cannabis sativa L. A n extraction and enrichment procedure was developed for the characterization of phospholipids and sulfolipids. A study on the solid-liquid extraction was performed, to maximize the recovery of the considered lipids; the best procedure consisted of a simple extraction with a mixture of methanol and chloroform (1:1,  v / v ). The hemp extracts were analyzed by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry and lipids were tentatively identified by Lipostar. To improve the number of identifications, an enrichment method, based on graphitized carbon black solid phase extraction, was evaluated to fractionate phospholipids and sulfolipids into separate eluates. Lastly, a semi-quantitative analysis permitted the hemp polar lipidome to be characterized. The results allow knowledge of the hemp chemical composition to be improved with a detailed description of its phospho- and sulfolipid profiles.
Summary

The chemical composition of  Cannabis sativa  L. has been extensively investigated for several years; nevertheless, a detailed lipidome characterization is completely lacking in the literature. To achieve this goal, an extraction and enrichment procedure was developed for the characterization of phospholipids and sulfolipids. Firstly, a study on the solid-liquid extraction was performed, to maximize the recovery of the considered lipids; the best procedure consisted of a simple extraction with a mixture of methanol and chloroform (1:1,  v / v ). The hemp extracts were analyzed by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry and lipids were tentatively identified by Lipostar. To improve the number of identifications, an enrichment method, based on graphitized carbon black solid phase extraction, was evaluated to fractionate phospholipids and sulfolipids into separate eluates. Recovery and matrix effects of the procedure were determined on a mixture of standard lipids, containing representative compounds for each considered lipid class. The optimized method allowed the tentative identification of 189 lipids, including 51 phospholipids and 80 sulfolipids, in the first and second fractions, respectively. The detection of only 6 sulfolipids in the first fraction and 9 phospholipids in the second fraction proved the efficacy of the fractionation method, which also allowed the number of lipid identifications to be increased compared to the same procedure without enrichment, which scored 100 lipids. Finally, a semi-quantitative analysis permitted the hemp polar lipidome to be characterized. The results of this study allow knowledge of the hemp chemical composition to be improved with a detailed description of its phospho- and sulfolipid profiles.

2020 Annual Fund Sponsors: